
International Journal of Innovative Solutions in Engineering
2025, Vol. 1 No. 1 (pages 1–9)
DOI: 10.47960/3029-3200.2025.1.1.1

Research Article

 OPEN ACCESS

Contact Doris Musa, doris.musa@fsre.sum.ba, Faculty of Mechanical Engineering, Computing and Electrical Engineering
University of Mostar
2025 by the Author(s). Licensee IJISE by Faculty of Mechanical Engineering, Computing and Electrical Engineering,
University of Mostar. This article is an open-access and distributed under the terms and conditions of the CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/)

1

Achieving Successful Software Penetration Testing

Doris Musa1, Ivan Markić1
1Faculty of Mechanical Engineering, Computing and Electrical Engineering University of Mostar, Bosnia and Herzegovina

Abstract
In today's digital environment, where society faces cyber threats,
security is a key component of any organization. Penetration testing is
crucial in detecting and eliminating security weaknesses before real
attackers can use them. In reality, software penetration testing mimics
real-world attacks on software applications to detect vulnerabilities,
i.e., security vulnerabilities that real attackers could exploit. The testing
requires careful planning, precise performance, and a thorough
analysis of the results. This paper deals with successful penetration
testing, starting with the basic steps of planning and de�ining the scope
of the test itself. An overview of all tools and techniques and the
importance of choosing the right tools for penetration testing are
presented. The paper provides a comparative analysis of key tools for
penetration testing, including practical guidelines for choosing
appropriate methodologies and frameworks. Penetration testing
requires a continuous approach as threats and vulnerabilities evolve
with technology development. Through regular testing and updates of
security policies, organizations can ensure the security of their own
software systems.

Article history
Received: 20. 12. 2024.
Revised: 14. 01. 2025.
Accepted: 16. 01. 2025.
Keywords
Software Security,
Risk Assessment,
Penetration Testing,
Abuse Cases.

1 Introduction
Penetration testing is a technique for assessing the
security of computer systems, networks, or
applications based on simulating actual attacks.
Penetration testing aims to detect vulnerabilities that
attackers could exploit and provide the organization
with insight into weaknesses that need to be
eliminated before a real threat occurs. At the
beginning of the testing process, it is necessary to
clearly de�ine the testing scope and goal, including
identifying the components to be tested. Once the
scope is set, the next step is to perform a test that
includes different testing methods. The �inal
penetration testing phase is the results' analysis
phase, which consists of a detailed review and
analysis of the collected data to identify potential
security �laws. Reports that include
recommendations for resolving discovered
vulnerabilities are produced, which document the
vulnerabilities found and provide guidance for

improving security measures. Key stages of the
testing process, including preparation, vulnerability
identi�ication, exploitation, and �inal reporting, were
also discussed to ensure a thorough and systematic
approach that allows for a detailed analysis of
security vulnerabilities, as well as providing practical
recommendations for improving the protection of the
systems themselves [1], [3], [4], [5].

1.1 Vulnerabilities in the software
A vulnerability is a bug that an attacker can exploit.
There are a multitude of vulnerabilities, and in the
�ield of computer security, their classi�ications have
been created. In computer systems, vulnerabilities
range from local implementation errors through
procedural errors to more serious ones at the design
level. Vulnerabilities are often divided into two
categories: implementation-level errors and design-
level �laws. Malicious attackers don't care if a bug or a
�law causes a �law in the software, although bugs can
be exploited more easily. The most challenging thing

mailto:doris.musa@fsre.sum.ba
https://creativecommons.org/licenses/by/4.0/

IJISE, 2025. https://ijise.ba/

2

is handling vulnerabilities at the design level, which
are the most common and critical. Determining
whether a program has a vulnerability at the design
level requires much expertise, making �inding these
vulnerabilities particularly dif�icult to automate.
Some design-level issues include error handling in
object-oriented systems, unsecured data channels,
and lack of monitoring/monitoring, which almost
always leads to a security risk [1].

1.2 Security testing and risk management
Software security professionals perform a variety of
tasks to manage software security risks, including
creating malicious use cases, listing normative
security requirements, conducting an architectural
risk analysis, creating risk-based security test plans,
using static analysis tools, performing security and
later penetration tests, as well as cleaning up after
security breaches. The tasks of architectural risk
analysis, risk-based test plan development, and
security testing are closely related, as a key aspect of
security testing involves the research of security risks
[1].

The well-known saying "software security is not
security software" emphasizes the importance of
security testing. Speci�ic security features such as
cryptography and authentication play a key role, but
security is still a feature of the entire system, not just
security mechanisms [1].

For this reason, security testing should include
testing of security mechanisms to verify their
correctness and risk-based testing, which simulates
an attacker's approach [1].

Risk analysis is a tool to support business decisions,
i.e., it is a way of gathering the necessary data to make
the right decision based on knowledge of
vulnerabilities, threats, impacts, and probabilities [2].

All de�ined risk analysis methodologies have
advantages and disadvantages but share modern
software design's fundamental principles and
limitations. Risk analysis should be included in the
entire software development life cycle [2].

Figure 1 shows the software development life cycle
and the speci�ic parts of the cycle where risk analysis
is examined [2]. Traditional risk analysis

methodologies are divided into two categories,
commercial and standardized, and each includes key
concepts, namely:

Figure 1 Software development life cycle with an emphasis on
risk analysis [2]

• Property constituting an object of protection;
• Risk is the probability of an adverse event

affecting an asset;
• The threat is a source of danger;
• A vulnerability is a weakness in a system that

an attacker can exploit;
• The impact of risk can be �inancial,

reputational or legal;
• Probability is the probability that an event

will occur, expressed as a percentage [2].

Many risk assessment methods calculate the nominal
value of an information resource and try to determine
the risk as a function of loss and probability of events
[2].

The classic method of risk analysis expresses risk as
�inancial loss, i.e., annual expected loss (ALE-
Annualized Loss Expectancy) according to the
following equation:

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥 𝐴𝐴𝐴𝐴𝐴𝐴 Eq (1)

SLE (Single Loss Expectancy) is the single expected
loss, and ARO (Anual Rate of Occurrence) is the
annual rate of incidence [2].

For example, a stock trading app over the internet
contains vulnerabilities allowing unauthorized
access. If the risk analysis determines that the of�ice
procedures will prevent a malicious transaction, the
loss would only be the cost of withdrawing
transactions, which amounts to $150 per event. If 100
such events occur annually, the total loss (ALE) will
be $15.000 [2].

This amount provides a baseline estimate for
deciding whether to invest in remediating
vulnerabilities. However, an annual loss of $ 15.000

IJISE, 2025. https://ijise.ba/

3

may not be signi�icant for a stock trading company in
terms of other market risks [2].

1.3 The Basics of Penetration Testing
Penetration testing is a method of assessing the
security of computer systems or networks based on
the simulation of actual attacks. During this process,
an authorized tester uses the same methods and
techniques that a potential attacker would use to
identify vulnerabilities that could allow unauthorized
access. Although penetration testing effectively
detects potential security weaknesses, its role is often
overestimated. This method cannot provide absolute
certainty or prove that a system has no weaknesses.
Still, it can estimate the knowledge and effort an
attacker requires to compromise a system. As a result,
safety cannot be guaranteed in general
circumstances, only in speci�ic circumstances [3].

In the initial stages of penetration testing
development, it was believed that all vulnerabilities
could be detected through recognizable patterns,
which in�luenced the development of automated
tools to �ind them. However, due to the diversity of
computer and operating systems and programming
languages, these tools have become impractical and
quite complicated. In contrast, adapting existing tools
for new environments is expensive and complex [3].

Today's modern systems are focused on a limited
number of operating systems and a few programming
languages, which leads to the assumption that future
tools for identifying vulnerabilities could be much
more effective. The new tools are specialized and
focus on certain security aspects [3].

Vulnerability scanning uses automated processes for
the initial security assessment, while penetration
testing con�irms or refutes these vulnerabilities.
Based on this, a reduced and precise list of
vulnerabilities that can be determined with high
certainty to exist in the system is created [3].

Testing the security of computer systems, networks
and applications through penetration testing has
been around for decades but became popular in the
early 1990s after the release of the Internet Security
Scanner tool from the Georgia Institute of Technology.
As the software became more complex, penetration

testing was expanded to include application software,
which brought new technical challenges. Also,
advances in reporting have made it easier to analyze
the results, including reports at the organizational
level. In addition, it allowed testing professionals to
test remotely just before implementation, and it
included testing from the outside, simulating an
attacker without insight into the system's design.
However, this approach has limitations as testers lack
a deeper understanding of the application. Although
penetration testing has progressed, it is still not fully
integrated into the development of software systems
since most of the advances are focused on tools rather
than on the development of security in the software
development process itself [4].

2 General methodology
The process of penetration testing takes place
through seven phases, namely:

1. Pre-engagement phase;
2. Reconnaissance (active and passive);
3. Discovery;
4. Vulnerability analysis;
5. Exploitation and post-exploitation;
6. Maintaining access and hiding traces;
7. Reporting.

2.1 Pre-engagement phase
In the �irst phase, the security specialist analyzes the
test logistics and the engagement rules. Testing
objectives are de�ined, which should be clear and
aligned with the speci�ic security requirements of the
organization [5].

At this stage, it is essential to determine the scope of
testing by de�ining the systems, networks, and
applications involved in the testing, as well as to
identify prohibited areas or systems to know what
can be expected from the testing process [5].

The duration of the testing is also determined with
start and end dates, and at the end of this phase, the
testing provider is provided with all the access
necessary for penetration testing [6].

IJISE, 2025. https://ijise.ba/

4

2.2 Reconnaissance
A penetration test begins with a reconnaissance of
the target operating systems by gathering the
necessary information about the system,
organization, or person. Collecting information is
crucial when conducting any test on an information
system and provides the prerequisites required to
continue testing [3].

This phase includes two ways of collecting
information, namely passive and active.

Passive reconnaissance collects information about
the target system without direct contact with it. The
usefulness of the information collected depends on
the type of pentest. For example, the network pentest
may reveal additional domain names and IP
addresses to be included in the scope [6].

Active reconnaissance sends network requests to test
the target system. A testing specialist analyzes the
software vulnerabilities published in the discovered
software to �ind further potential vulnerabilities and
inbound exact attacks such as authentication forms
[6].

2.3 Discovery
This phase of testing is present only in network
penetration tests in such a way as to identify as many
open ports as possible. The scan is performed using
automated tools and applications [6].

The network scanning process involves several key
activities. The �irst step is to identify the active
computers within the network, after which their
ports and services are scanned to gather information
about the available resources. The next step involves
determining the outer boundaries of the network,
which consists in identifying the routers and �irewalls
that protect the network. It is also essential to identify
critical services that are of great importance for
network functioning and data protection. One of the
parts of the scanning phase is the collection of
information about the operating system based on the
speci�ic characteristics of the system, and the MIB
(Management Information Base) database is used to
identify network routes, which allows an
understanding of the �low of data through the
network [3].

The �inal step involves analyzing the active services
on the network to gather more detailed information
about the types and versions of services running on
devices within the network [3].

2.4 Vulnerability analysis
During the secure scan, various sources of threats are
detected, which pentesters analyze to identify hidden
vulnerabilities and prioritize them according to the
risk they pose to the system. An inventory of
discovered vulnerabilities is also performed, as well
as an assessment of the expected impact and the
identi�ication of attack paths and scenarios for
exploitation [3].

Following a procedure that assesses severity and risk
consistently is necessary to examine vulnerabilities
properly. One of the tools used to determine the
severity of vulnerabilities is the CVSS (Common
Vulnerability Scoring System). CVSS is a widely used
tool that assigns a numerical rating to each
vulnerability based on its severity. Based on the score
obtained, a priority is de�ined to address the
vulnerability [5].

2.5 Exploitation and post-exploitation phase
This phase aims to establish access to the system in a
simulated attack through identi�ied vulnerabilities. A
testing specialist �inds an entry point and searches for
available resources. At this stage, testers must be very
careful with the functions of the test object so as not
to damage the work process. After the pentester, i.e.,
an expert who conducts security testing of computer
systems, networks or applications through attack
simulation, exploited vulnerabilities and �inds the
entrance to the system, the next step is to consider
questions such as the amount of access provided by
the entry point, how easy it is to maintain access and
how long it can take before a breach is noticed, and
what is the degree of damage that the vulnerability
can cause [5].

When penetration is successful, but access to lower-
level systems is obtained, it is possible to increase
privileges further. It is necessary to perform mapping
of local vulnerabilities, which is the opposite of
network-based vulnerabilities, exploiting or
developing a proof of concept that has been tested in

IJISE, 2025. https://ijise.ba/

5

an isolated case and applied to the compromised
system. The main goal in this mode is to gain
administrator privileges based on previously
acquired rights of minor importance, which are
limited by the applied �ixes and tools for checking the
system's integrity [3].

If the attempt to achieve access has failed, some other
options are available to gain access. Some ways are to
detect usernames/passwords using dictionary or
brute force attacks, to detect blank or default
passwords in system accounts, and to detect public
services that allow certain operations, such as
writing/creating/reading �iles. If the attempt to
bypass the passwords yields an appropriate result,
the compromise of the target and intermediate
systems, such as routers, �irewalls, etc., follows. [3].

2.6 Maintaining access and hiding traces
Maintaining access and hiding traces are key aspects
of the pentest, which allow the tester to remain
present in the compromised system without the risk
of detection [3].

In this phase, various tools and techniques are
applied, such as the use of hidden communication
tools, the installation of a retractable door (e.g.,
Backdoor), using rootkit tools, hiding �iles, cleaning
logs, unchecking integrity checks as well as
deactivating antivirus channels. Standard
penetration testing does not use techniques such as
channel obfuscation, backdoor installation, and
rootkits because of the risk of leaving these tools
active after testing, allowing potential attackers to
access the system in an actual attack [3].

2.7 Reporting
All previous steps of penetration testing contribute to
this phase, which includes creating a VAPT and
sharing it with the client [5]. VAPT (Vulnerability
Assessment and Penetration Testing) is a
methodological approach to improving an
organization's security posture by identifying,
prioritizing, and mitigating vulnerabilities in its
infrastructure [7].

The penetration testing report covers the agreed
testing parameters and the known limitations of the
testing performed. It also features a high-level

discussion of the penetration test results, business
impact assessment, and recommendations. In
addition, the report provides detailed technical
information on each vulnerability identi�ied and
sensitive data exploited, including a description of the
vulnerability, a severity assessment, reproduction
steps, evidence, and practical recommendations for
remediation [6].

3 Access to penetration testing
Any type of testing, including software security
testing, requires determining who should do it and
what actions need to be taken [1].

Using a traditional approach, standard testing
organizations can perform functional safety testing.
One of the primary tasks of functional testing is to
ensure that access control mechanisms work as
expected. On the other hand, traditional quality
assurance teams �ind it more challenging to conduct
risk-based testing due to expertise [1].

Security tests, especially those that lead to full
exploitation, are challenging to design because the
designer needs to think like an attacker. Another
problem is that security tests don't always produce
security exploits, which causes visibility issues. A
safety test can lead to an unexpected outcome that
requires further sophisticated analysis [1].

The white box and black box methods try to
understand the software using different approaches
depending on whether the testers can access the
source code. White box analysis involves analyzing
and understanding the source code and design and
effectively �inding bugs. This approach also has a
drawback: it can sometimes report a vulnerability
where it does not exist [1].

Black Box testing is based on analyzing the program
in operation by sending it various inputs. This type of
testing requires an operation program and does not
use source code analysis. Malicious inputs are added
to the program to try to exploit it. If the program stops
working during the test, a security problem can be
detected [1].

Each of the testing methods can reveal possible
software risks and potential exploits. However, one of

IJISE, 2025. https://ijise.ba/

6

the drawbacks is that most organizations focus on
features by devoting little time to understanding or
examining risk dysfunction [1].

3.1 Penetration Testing Tools and Frameworks
Testers use various techniques, tools, and
frameworks when conducting penetration testing.
The most well-known penetration testing tools
include Kali Linux, Metasploit, Burp Suite, and Nmap.

• Kali Linux is an open-source Linux
distribution based on Debian. It is designed
for the needs of digital forensics and security
breach testing and comes pre-installed with
various security tools. Key features are
adaptability to suit the speci�ic needs of users,
community support that contributes to its
development by providing support through
forums and documentation, and portability
since it can be run on a virtual machine or
installed on a hard disk [8].

• The Metasploit Framework is a project that
contains information about security
vulnerabilities and helps with penetration
testing. The tool is designed for anti-forensic
techniques and evading detections [9]. This
tool comes pre-installed in penetration
testing operating systems such as Kali Linux.
It contains a collection of tools that hackers
use to check for security vulnerabilities,
perform attacks, and evade detections [10].

• Burp Suite is a graphical tool for testing the
security of web applications. The tool is
developed in Java by PortSwigger Web
Security. It encompasses a collection of tools
combined into a single package for web
application security. Burp Suite can be used as
a basic HTTP proxy to intercept traf�ic for
analysis and playback, a web application
security scanner, and a tool to perform
automated attacks on web applications and
inspect the entire website to identify attacks
[11].

• Nmap is an open-source network discovery
and security auditing tool. Many system and
network administrators �ind it helpful to
organize service upgrade schedules and keep
track of host or service uptime. Nmap uses a

more advanced technique of sending raw IP
packets to identify which hosts are available
on the network, what services they provide,
as well as which operating systems are
installed. The Nmap package includes an
advanced GUI and result viewer, �lexible data
transfer, redirection and debugging tool, and
a package generation and analysis tool [12].

In penetration testing, in addition to tools,
frameworks that help testers in the penetration
testing phases are also important: OWASP, PTES,
ISSAF, OSSTMM, and NIST.

• OWASP (Open Web Application Security
Project) is a non-pro�it organization that
provides various security testing guides,
tools, and methods with open licenses,
including OTG (OWASP Test Guide). The three
main components are web application
development with the OWASP Testing
Framework, a testing methodology for web
applications, and reporting. This framework
allows developers to build security-oriented
web applications through penetration testing
and security recommendations, instruments,
and standards for coding and testing web and
mobile applications [13].

• The Penetration Testing Execution Standard
(PTES) is a framework developed in 2009 by
Nickerson et al. This framework includes pre-
engagement interaction, information
gathering, threat modeling, vulnerability
analysis, exploitation, post-exploitation, and
reporting. It can also be combined with other
frameworks like OWASP for application
testing. This framework aims to create
guidelines for penetration testing where
security professionals can use basic
guidelines for the expected security
requirements of the pentest [14].

• The Information Systems Security
Assessment Framework (ISSAF) is an open
license framework developed by the Open
Information Systems Security Group (OISSG).
This framework seeks to cover all aspects of
penetration testing, and one of the
advantages is to show the different

IJISE, 2025. https://ijise.ba/

7

relationships between the tasks and the
associated tools for each task [15], [16], [17].

• OSSTMM (Open-Source Security Testing
Methodology Manual) was created in 2000 as
a free framework from v.3, while v.4 required
a subscription. The framework is not as
comprehensive as ISSAF but is the basic
methodological framework for audits [18].

• The National Institute of Standards and
Technology (NIST) presents a cybersecurity
framework that is designed to identify and
mitigate cyber risks in the industry. NIST lists
tasks that must be completed during the
pentest without explaining how to inventory
physical devices, systems, or software
applications and platforms [19], [20].

Figure 2 provides an overview of testing tools based
on 27 selected papers that speci�ically study
frameworks widely used with corresponding tools
[14].

Figure 2 Penetration testing frameworks [14]

Based on the analysis and research question (What
frameworks are widely used in penetration testing
security assessments?), it was found that there is a
vast demand for OWASP, followed by PTES and ISAF,
OSSTM, and NIST, with several frameworks already
popular and named after development teams [14].

4 Use Case: Penetration testing for software
security in �inancial institutions

Financial institutions are frequently the targets of
cyberattacks due to the high volume of �inancial
transactions they process and the sensitive data they
manage. Identifying security vulnerabilities is
essential to prevent potential attacks, as their
software systems are complex and rely on web

applications. This case study examined the
penetration testing of a �inancial institution's
software system, focusing on the security of web
applications and critical system components.

4.1 Methodology
A structured approach was used across several
important stages of the testing methodology.
Information on the system was gathered in the �irst
phase from publicly accessible sources, such as DNS
services and WHOIS databases, which were used to
identify domains and IP addresses. We carried out
passive research by identifying exposed devices and
services with Shodan and identifying security �laws in
publicly accessible components with Censys.
Network scanning and port analysis were active
techniques used to �ind open services and potential
application entry points [2], [5], [14], [15].

A combination of automatic and manual techniques
was used to identify vulnerabilities. In order to �ind
known vulnerabilities, we used security scanners.
Simultaneously, manual testing made it possible to
precisely analyze particular application
functionalities like API protection, session security,
and input validation. Targeted attacks like SQL
injection and XSS were simulated in order to assess
the probability of unauthorized data access and
system compromise. The �inal step involved creating
reports that detailed vulnerabilities, their
consequences, and recommendations for improving
security [2], [5], [14], [15].

4.2 Results
The test results shown in Table 1 indicated the
presence of signi�icant security vulnerabilities. A total
of 20 vulnerabilities were identi�ied, of which 7
(35%) were classi�ied as critical due to the high risk
to the system and user data. Among them were SQL
Injection, which allowed unauthorized access to the
database, and XSS vulnerabilities, which
compromised user sessions. Analysis of session
mechanisms revealed a weakness in cookie settings,
while vulnerabilities were noted in API components
due to inadequate encryption and authorization
rules.

0
2
4
6
8

10

OWASP PTES ISSAF OSSTM NIST Others

IJISE, 2025. https://ijise.ba/

8

Table 1 Display of penetration testing results

Vulnerability Description Number
of cases

Percentage
of total

vulnerabilities
Classi�ication

SQL Injection
Enables unauthorized access to the

database through manipulation of SQL
queries

3 15% Critical

Cross-Site
Scripting (XSS)

Allows insertion of malicious code that
can compromise user sessions 4 20% High Priority

Weak
Authentication

Mechanisms

Lack of two-factor authentication and
weak password protection 5 25% Critical

Inadequate API
Protection

Missing encryption of data in transit and
weaknesses in authorization rules 3 15% High Priority

Weak Session
Management

Poorly con�igured cookies allow potential
session hijacking. 5 25% Critical

The implementation of a Content Security Policy
(CSP) to prevent XSS, input checking to prevent SQL
Injection, and enhanced authentication procedures
and encryption to fortify API security were among the
suggested actions.

5 Conclusion
Penetration testing is a method that allows
organizations and individuals to identify
vulnerabilities through a security assessment. The
effectiveness of penetration testing requires a holistic
approach that includes a transparent methodology,
the use of speci�ic tools, and the selection of
appropriate testing frameworks. Frameworks such as
OWASP, PTES, and NIST provide structured guidance
through the penetration testing phases, from
planning and information gathering to exploitation
and reporting. Tools such as Nmap for scanning
networks or Metasploit for vulnerability testing are
crucial for identifying and exploiting security
weaknesses in the system. It is essential to align the
methodology and tools with the characteristics of the
target system, whether it is web or mobile
applications, networks, and more, to ensure a
complete insight into threats. Effective penetration
testing is the basis for maintaining high system
security and protection against potential threats.
Penetration testing greatly decreased the danger of
cyberattacks by enabling the identi�ication of critical
vulnerabilities and the proposal of focused
countermeasures. Financial institutions can improve

system security and boost user con�idence in data
protection by using this strategy.

Con�licts of Interest: The authors report there are no
competing interests to declare;

IJISE, 2025. https://ijise.ba/

9

References

[1] B. Potter and G. McGraw, “Software security testing”, IEEE
Security & Privacy, vol. 2, no. 5, pp. 81–85, Sep. 2004, doi:
10.1109/MSP.2004.84.

[2] D. Verdon and G. McGraw, “Risk analysis in software design”,
IEEE Secur. Privacy, vol. 2, no. 4, pp. 79–84, Jul. 2004, doi:
10.1109/MSP.2004.55.

[3] CARNet CERT and LS&S, “Metodologija penetracijskog
testiranja,” 2008. [Online]. Available:
https://www.cis.hr/www.edicija/LinkedDocuments/CCER
T-PUBDOC-2008-02-219.pdf

[4] K. Van Wyk, “Adapting penetration testing for software
development purposes,” Jan. 2007. [Online]. Available:
https://apps.dtic.mil/sti/pdfs/AD1180049.pdf

[5] H. M. Z. A. Shebli and B. D. Beheshti, “A study on penetration
testing process and tools”, in 2018 IEEE Long Island Systems,
Applications and Technology Conference (LISAT), May 2018,
pp. 1–7. doi: 10.1109/LISAT.2018.8378035.

[6] “Penetration Testing Phases”. Accessed: Jan. 16, 2025.
[Online]. Available: https://amatas.com/blog/penetration-
testing-phases/

[7] J. N. Goel and B. M. Mehtre, “Vulnerability Assessment &
Penetration Testing as a Cyber Defence Technology”,
Procedia Computer Science, vol. 57, pp. 710–715, 2015, doi:
10.1016/j.procs.2015.07.458.

[8] G. Whittaker, “Hacking Made Easy: A Beginner’s Guide to
Penetration Testing with Kali Linux | Linux Journal”.
Accessed: Jan. 16, 2025. [Online]. Available:
https://www.linuxjournal.com/content/hacking-made-
easy-beginners-guide-penetration-testing-kali-linux

[9] Metasploit, “Metasploit Framework User Guide,” Amyotroph.
lateral Scler. Off. Publ. World Fed. Neurol. Res. Gr. Mot.
Neuron Dis., vol. 11, no. 1–2, pp. 38–45, 2010.

[10] S. Raj and N. K. Walia, “A study on Metasploit Framework: a
Pen-Testing tool,” 2021 International Conference on
Computational Performance Evaluation (ComPE), pp. 296–
302, Jul. 2020, doi: 10.1109/compe49325.2020.9200028.

[11] P. Kumawat, “Introduction to Burp Suite – Guide for Burp
Suite,” Security Cipher, Nov. 15, 2023.
https://securitycipher.com/2020/06/07/introduction-to-
burp-suite-guide-for-burp-suite/

[12] “Nmap: the Network Mapper - Free Security Scanner.”
https://nmap.org/

[13] The Open Web Application Security Project, “Testing guide,”
book. [Online]. Available: https://owasp.org/www-project-
web-security-testing-
guide/assets/archive/OWASP_Testing_Guide_v4.pdf

[14] H. M. Adam, Widyawan, and G. D. Putra, “A Review of
Penetration Testing Frameworks, Tools, and Application
Areas”, in 2023 IEEE 7th International Conference on
Information Technology, Information Systems and Electrical
Engineering (ICITISEE), Purwokerto, Indonesia: IEEE, Nov.
2023, pp. 319–324. doi:
10.1109/ICITISEE58992.2023.10404397.

[15] J. A. Pratama, A. Almaarif, and A. Budiono, “Vulnerability
Analysis of Wireless LAN Networks using ISSAF WLAN
Security Assessment Methodology: A Case Study of
Restaurant in East Jakarta,” 2021 4th International
Conference of Computer and Informatics Engineering (IC2IE),
pp. 435–440, Sep. 2021, doi:
10.1109/ic2ie53219.2021.9649360.

[16] I. G. A. S. Sanjaya, G. M. A. Sasmita, and D. M. S. Arsa,
“Information Technology Risk management using ISO 31000
based on ISSAF Framework Penetration Testing (Case Study:
Election Commission of X City),” International Journal of
Computer Network and Information Security, vol. 12, no. 4,
pp. 30–40, Aug. 2020, doi: 10.5815/ijcnis.2020.04.03.

[17] F. Abu-Dabaseh and E. Alshammari, “Automated Penetration
Testing : An Overview”, in Computer Science & Information
Technology, Academy & Industry Research Collaboration
Center (AIRCC), Apr. 2018, pp. 121–129. doi:
10.5121/csit.2018.80610.

[18] A. Giuseppi, A. Tortorelli, R. Germana, F. Liberati, and A.
Fiaschetti, “Securing Cyber-Physical Systems: An
Optimization Framework based on OSSTMM and Genetic
Algorithms,” 2022 30th Mediterranean Conference on Control
and Automation (MED), pp. 50–56, Jul. 2019, doi:
10.1109/med.2019.8798506.

[19] N. M. Karie, N. M. Sahri, W. Yang, C. Valli, and V. R. Kebande, “A
review of security Standards and Frameworks for IoT-Based
Smart Environments,” IEEE Access, vol. 9, pp. 121975–
121995, Jan. 2021, doi: 10.1109/access.2021.3109886.

[20] B. A. B. Arfaj, S. Mishra, and M. AlShehri, “Ef�icacy of
unconventional penetration testing practices,” Intelligent
Automation & Soft Computing, vol. 31, no. 1, pp. 223–239,
Sep. 2021, doi: 10.32604/iasc.2022.019485.

	1 Introduction
	1.1 Vulnerabilities in the software
	1.2 Security testing and risk management
	1.3 The Basics of Penetration Testing

	2 General methodology
	2.1 Pre-engagement phase
	2.2 Reconnaissance
	2.3 Discovery
	2.4 Vulnerability analysis
	2.5 Exploitation and post-exploitation phase
	2.6 Maintaining access and hiding traces
	2.7 Reporting

	3 Access to penetration testing
	3.1 Penetration Testing Tools and Frameworks

	4 Use Case: Penetration testing for software security in financial institutions
	4.1 Methodology
	4.2 Results

	5 Conclusion

