Integration of 3D Printing Technology into the Process of Manufacturing and Optimization of the Transfemoral Prosthesis

Prepared By Editor-in-Chief

International Journal of Innovative Solutions in Engineering is published semi-annually.

ISSN: 3029-3200

Marko Karačić , Amila Dedić and Remzo Dedić* ORCID profile of Remzo Dedić

This article belongs to Vol. 1 No. 2, 2025

M. Karačić, A. Dedić, and R. Dedić, “Integration of 3D Printing Technology into the Process of Manufacturing and Optimization of the Transfemoral Prosthesis,” International Journal of Innovative Solutions in Engineering, vol. 1, no. 2, pp. 1–11, Jul. 2025, doi: 10.47960/3029-3200.2025.1.2.1.

pages 1-11

Download a citation file:

Preview and download a citation file in BibTex format that can be imported by citation management software, including Mendeley, EndNote, ProCite, RefWorks, and Reference Manager.

This article is archived in Zenodo

Zenodo Archive DOI: 10.5281/zenodo.17052499

Abstract

Keywords

ijise ID

Publication Date

References

  1. J. Edelstein and A. Moroz, Lower-Limb Prosthetics and Orthotics: Clinical Concepts. Thorofare: SLACK Incorporated, 2010.
  2. F. R. T. Nelson and C. T. Blauvelt, A manual of orthopaedic terminology, 8th edition. Philadelphia, PA: Elsevier/Saunders, 2015.
  3. H. Mihajlo, “Contribution to the analysis of hydraulic components for upper leg prostheses”, University of Mostar, Faculty of Mechanical Engineering, Mostar, 2001.
  4. A. Žiga, “Foot design of above-the-knee prosthesis with built-in hydraulic actuators in the ankle and knee”, University of Zenica, Faculty of Mechanical Engineering, Zenica, 2006.
  5. M. Rupar, “Contribution to the research of above-knee prosthesis with active hydraulically driven knee and ankle joints and prosthetic foot with passive joint bending in the front part”, University of Mostar, Faculty of Mechanical Engineering and Computing, Mostar, 2017.
  6. M. Arazpour, Ed., Prosthetics and Orthotics. Erscheinungsort nicht ermittelbar: IntechOpen, 2021.
  7. A. J. Thurston, “Paré and prosthetics: the early history of artificial limbs”, ANZ Journal of Surgery, vol. 77, no. 12, pp. 1114–1119, Dec. 2007, doi: https://doi.org/10.1111/j.1445-2197.2007.04330.x.
  8. J. P. D. Kaushik Kumar, “A Brief History of Prosthetics and Orthotics of the Lower Body and Their Types”, Design, Development, and Optimization of Bio-Mechatronic Engineering Products, IGI Global, 2019.
  9. J. Gardiner, A. Z. Bari, D. Howard, and L. Kenney, “Transtibial amputee gait efficiency: Energy storage and return versus solid ankle cushioned heel prosthetic feet”, J Rehabil Res Dev, vol. 53, no. 6, pp. 1133–1138, 2016, doi: https://doi.org/10.1682/JRRD.2015.04.0066.
  10. K. B. Fite, “Overview of the Components Used in Active and Passive Lower-Limb Prosthetic Devices”, in Full Stride, V. Tepe and C. M. Peterson, Eds., New York, NY: Springer New York, 2017, pp. 55–74. doi: https://doi.org/10.1007/978-1-4939-7247-0_4.
  11. M. Husnjak, “Teorija mehanizama”, p. 427, 1996, Accessed: Apr. 09, 2025. [Online]. Available: https://www.croris.hr/crosbi/publikacija/prilog-knjiga/23816.
  12. Z. Jelačić, R. Dedić, and H. Dindo, “Chapter 5 – Prosthetic design and prototype development”, in Active Above-Knee Prosthesis, Z. Jelačić, R. Dedić, and H. Dindo, Eds., Academic Press, 2020, pp. 155–199. doi: https://doi.org/10.1016/B978-0-12-818683-1.00005-6.
  13. R. Dedić, Roboti. Mostar: Sveučilište u Mostaru, 2008.
  14. “Understanding Hydraulic Cylinders: The Power Behind Your Machinery – SNS Pneumatic”. Accessed: Apr. 10, 2025. [Online]. Available: https://snspneumatic.com/understanding-hydraulic-cylinders-the-power-behind-your-machinery/
  15. M. Rupar, Z. Jelačić, R. Dedić, and A. Vučina, “Power and Control System of Knee and Ankle Powered Above-Knee Prosthesis”, Sarajevo: Academy of Sciences and Arts of Bosnia and Herzegovina, Jun. 2018.
  16. H. Dindo, Z. Husnic, R. Dedic, and A. Vucina, “Smart LEG Control System Optimization”, in Advanced Technologies, Systems, and Applications II, M. Hadžikadić and S. Avdaković, Eds., Cham: Springer International Publishing, 2018, pp. 1189–1199. doi: https://doi.org/10.1007/978-3-319-71321-2_102.
  17. R. Gehlhar, “Model-Based Lower-Limb Powered Prosthesis Control: Developing and Realizing Nonlinear Subsystem Control Methods for Generalizable Prosthesis Control”, phd, California Institute of Technology, 2023. doi: https://doi.org/10.7907/6724-6e14.
  18. S. Chemello and H. Ansaripour, “Finite element analysis of socket optimization in accordance with the deformation of external surface of the stump”, Dec. 2018, Accessed: Apr. 10, 2025. [Online]. Available: https://www.politesi.polimi.it/handle/10589/145138
  19. I. Gibson, D. W. Rosen, and B. Stucker, Additive manufacturing technologies: 3D printing, rapid prototyping and direct digital manufacturing, 2nd edition. New York London: Springer, 2015.
  20. C. Zhang et al., “Additive manufacturing of functionally graded materials: A review”, Materials Science and Engineering: A, vol. 764, p. 138209, Sep. 2019, doi: https://doi.org/10.1016/j.msea.2019.138209.
  21. M.Z. Cordero, R Dedic, Z Jelacic, R Toshev – Optimizing Mechanical Design for an Additively Manufactured Prosthetic Leg, Procedia Computer Science, 2024.
  22. N. Rašović, “Recommended layer thickness to the powder-based additive manufacturing using multi-attribute decision support”, International Journal of Computer Integrated Manufacturing, vol. 34, no. 5, pp. 455–469, May 2021, doi: https://doi.org/10.1080/0951192X.2021.1891574.
  23. I. Krešić, J. Kaljun, and N. Rašović, “Controlling the Mechanical Response of Stochastic Lattice Structures Utilizing a Design Model Based on Predefined Topologic and Geometric Routines”, Applied Sciences, vol. 14, no. 14, p. 6048, Jul. 2024, doi: https://doi.org/10.3390/app14146048.